Non-Functional Requirements

Ana Moreira

FCT/UNL

Requirements elicitation

* |dentify functional and technical system
requirements

* |dentify and understand the different
types of users who will be involved in
investigating system requirements

* Techniques: questionnaires, review of
documentation, interviews, observation
and shadowing, etc.




Types of requirements

* Functional requirements

— Activities the system must perform
—Based on procedures and business functions
—Documented in analysis models

* Technical (non-functional) requirements

— Describe operating environment and quality
objectives
—Documented in narrative descriptions of

technical requirements ;

What are
Non-Functional Requirements (NFRs)?

* NFRs are also known as Quality Attributes
[Chung 93, Boehm 96]

* Unlike functional requirements, NFRs state
constraints to the system as well as particular
behaviour that the system must have

* NFRs are always together with a functional
requirement [EAGLE 95, Chung 00]




Functional vs. NFRs

* Suppose we are dealing with a Clinical Analysis
Laboratory software system

* There will be a functional requirement:
— “The System must provide a data entry to input the
results of tests to a patient’s report”
* Associated to this requirement one may find the
following Security NFR:

— “Depending on the result of a test only the supervisor
will be able to input this value to the patient’s report”

Non-Functional X Functional

requirements
0 NFRs define global 0 FRs are local in nature (often
constraints: defined as scenarios of
- on a software system or interactions with the system)

subsystem,
= a functional requirement,
= the development, or
= deployment processes

0 NFRs are often subjective in

nature 0 FRs are objective in nature
0 NFRs are generally stated 0 FRs are generally stated
= informally, = more formally (structured language,
= are often contradictory, Use Cases/UML, formal methods),
- difficult to enforce during = usually do not conflict with each other,
development, = achieving FRs can be enforced by
- difficult to evaluate for the todays design methods,

customer prior to delivery = can be evaluated by customers




Accessibility

Additivity

Accuracy

Accountability

Agility

Adjustability
Adaptability

Auditability

Affordability

Clarity

Capability

Capacity

Commonality
Code-space performance
Cohesuveness
Compatibility
Communication cost
Communication time
Component integration time
Completeness
Component integration cost

NFRs examples

Conceptuality
Composability
Comprehensibility
Configurability
Conciseness
Confidentiality
Coordination cost
Consistency
Controllability

Cost

Coordination time
Correctness
Customer loyalty
Coupling

Customer evaluation time
Decomposability
Customizability
Data-space performance
Development cost
Degradation of service
Dependability
Diversity
Development time
Distributivity

Efficiency

Domain analysis cost
Domain analysis time
Evolvability
Elasticity
Enhanceability
External consistency
Execution cost
Extensibility
Flexibility
Fault-tolerance
Feasibility
Generality

Impact analyzability
Inspection cost
Inter-operability
Learnability
Maintenance cost
Mean performance
Modifiability
Nomadicity
Operability

Performance
Precision
Productivity
Promptness
Reconfigurability
Reengineering cost
Replaceability
Responsiveness
Risk cost
Safety

Security
Simplicity
Stability
Supportability
Testing time
Usability
Variability
Visibility
Verifiability
Validity
Wrappability
Versatility

> 160 NFRs [Chung 00]

Why bother with NFRs? (1)

= Market demands more and more non-functional
aspects to be implemented in information
systems besides its functionality

o Recent works have shown that complex
conceptual models must deal with non-
functional aspects
[Dardene 93, Mylopoulos 92, Chung 95]

o These non-functional requirements should be
dealt within the process of NFR definition




A Recent Press Release

= Microsoft's chairman, Bill Gates, is steering his software

empire onto a new strategic heading, putting security and
privacy ahead of new capabilities [new functionality] in
the company's products.

= In an e-mail to employees, Gates refers to the new
philosophy as "Trustworthy Computing" and says his
highest priority is to ensure that computer users
continued to venture safely across an increasingly
Internet-connected world.

Why bother with NFRs? (2)

* NFRs have a strong influence on design
decisions and implementation:
—They allow a wide spectrum of possible solution
choices;

—They reveal other functional requirements that
would, otherwise, be ommitted and only found
during late design and implementation phases.

* Netherless, there aren’t many tools and
techniques to handle them early enough
during development.

10




Chung’s NFR framework: what?

* |t is process-oriented, providing techniques for
justifying design decisions during the software
development process

* It is goal-driven since it treats NFR as goals to
be achieved

* It is different from traditional goal-oriented
approaches [Dardenne 93, Anton 96]
—As it uses the notion of softgoal, which represents

a goal that has no clear-cut criteria to determine
whether they’ve been satisfied. (Satisficed)

1

NFR framework: main concepts

Softgoal

Interdependencies

— Correlations, contributions and trade-offs

Softgoal Interdependency Graph (SIG)
Catalogue

[L.Chung, B.Nixon, E. Yu and J. Mylopoulos “Non-Functional Requirements in Software
Engineering”, Kluwer Academic Publishers. ISBN 0-7923-8666-3. (2000)]

12




Sofgoal: basic unit to represent NFR

* Three kinds of softgoals:

— NFR softgoals (or simply NFRs)
* high-level non-functional requirements to be satisficed

— Operationalizing softgoals

* possible solutions (operations, processes, data representations) or design
alternatives which help to achieve the NFR softgoal

— Claim softgoals
* justify the rationale and explain the context for a softgoal or interdependency

link
o —
’-P'\ Y \‘
r‘ £
9 1
~\.,_"-_-'

MNFR Softgoal | Operationalizing Softgoal | Claim Softgoal

Softgoal Interdependency
Graph (SIG)

* Graph representing softgoals and their
interdependencies

Interdependency Contribution

e + Partially Positive

——= BExplicit AND OR ++ Surely Positive
____________ i — Partially Megative
=3 Augllide == Surely Negative

14




Catalogue

e Groups an organized body of design knowledge
about NFRs
— types
— development techniques
— correlations among operationalizations and NFR
softgoals
* Can be used in different application domains

— allowing composition of the SIG (Softgoal
Interdependency Graph)

15

Catalogue: example
for a performance NFR in a credit card

Performance
Cancel {Card)]
) Time —
Space =’ [Can‘V E

[Cancel (Card)
Response Time
[Cancel {Card)]

;

ot Throughput
[Cancel (Card)]

‘ﬁq Response Time
' Response Time [doOthersOperations

H [Accesstattribute:(Cardj- N e

* Response Time
ndate = 3

Accepted =>

; Response Time
Retrieve (Card.status))

Positive

Not

PerfarmFirst

 Updateicardstatus]]

. PerformLater
ieve(Card. status)]

|




NFR type catalog

User

Performance 02t Friendiness / Sec:mty
Time Space Confidentiality Avaliability
/ \ / \ Integrity

R

Response Process Main Secondary
Time Management Memory Memory
Time
Thoughput Accuracy Completeness
17

NFR process

CI dentify Ftequirement%}-

( Decompose NFR Requirements

dentify Carrelations
and Priarities

C
( Identify Possible Operationalizat ions)

W

CSelect 0|:nE!rau’ci-:rnali:_".;ations)I

Relate functional requi rements}

to selected operationalizations

18




Identify NFRs

o List ambiguous, subjective, imprecise
requirements — qualitative by nature that
cannot be defined formally

= These are the Softgoals — it is not known how

they will be implemented
and what consequences

o] NFR Requi t:
they may provoke e
(\dentify Possible Ope: ratianalizatinns) Snd Eriortes
g T
o |nitiate a SIG 7
(Select Operationalizatw‘ons)

Relate functional requirements
to selected operationalizations

Identify NFRs: example

“Credit cards control system"

Security

Good
Performance

of Accounts

o Two main softgoals

o Look up relevant information from existing
catalogues

20

10



Catalogue rationale

Should include:

* Design rational
— Types of NFR
— Methods (decomposition & operationalization)
— Correlation (contribution) between softgoals

* Graphical representation for the developer choices

21

Decompose (refine) Softgoals

* AND relationship

— means that if all offsprings are satisficed, then the
parent will be satisficied

— reduces the scope of the problem into more concrete

sub-problems (transforms
problems into subproblems)

‘ O R re | atl 0 n Sh I p [(: Decompose NF‘:E Requirements j
. . ) Identify Correlations
— means that if any offspring T )

( Identify Possible Operationalizations
is satisficed, then the parent
WI” be SatISﬁCEd (Select Operationalizatw‘ons)

- i I U St rates a Ite rn aﬁve Relate functional requirements
{ to selected operationalizations J

concepts (or notions)

1



Decomposition: example (1)

Security

[Accounts]

Availability

Integrity [Accounts]
[Accounts]
Confidentiality

[Accounts]

Accuracy

Completeness

[Accounts] [Accounts]

23

Decomposition: example (2)

[Accounts]

Response
Time
[Accounts]

Space

[Accounts]

24

12



|dentify Priorities

* SIG diagrams may be large and complex

* Assign priorities to important to keep “an eye” on

important softgoals

Relate functional req
4o selected operatir

-~ ['Market survey: K
.~-strategic importance™] _.-*

- R

25

Identify Operationalizations (1)

Identify Requirement<);

: ]
=) . Catalogues offer multiple design
decisions and implementations for

softgoals
)
Availability
Confidentiality.

lizations )

Select Opera

e -
1 [‘Market survey:

VAN
Response
Time
+ 4 strategic

Validation/
Authorization
Access

+ I.ﬂa “=

Use indexing

Completeness
e ) o
uncompressed R j'l“f??fta”_cil o
format

26

13



|Identify Operationalizations (2)

Validation/
Authorization
Access

Rules

User
Identification
Access

Ask

Additional
ID
Compare
Signature
27

|dentify Correlations: contributions,
trade-offs

* One of the goals is to identify unexpected impacts
of one softgoal on others.

* These contributions should be identified and
classified according to their

strength:
—+ (positive) (: Decompose m:;aequirements )
—++ (SU rely pOSiﬁVG) ST
- (negatiVG) (Select Opera\f:{innalizatw‘ons)

— -- (surely negative)

Relate functional requirements
to selected operationalizations

14



Correlations

* Anaim is to identify unexpected impacts on other
softgoals:

— A softgoal may affect another one (not even initially
related), highlighting emergent properties

— The effect may be positive or negative

— The idenfied correlations (emergent) requires the
“merge” of the decomposition graphs

29

Contributions: example

Performance

Fast
response

Validation/
Authorization
Access
uncompressed
format

_.\' Optimised validation

X does not slow down

7~- the system too much v .-
\ h

30

15



Choose between alternatives

Fast
Response
Tlme

4—(;—_ \/ Very |
‘J<_important __)~

Uncom r \\
essed AN
N
% T Verif.
S ! Access
\\ 1
N
“ ! 1=
N '
. H

Identify Possible Operatio

Iden Hyc \t\nr\s

tionalizations

\/ Compare
i N

Relate functional requirements Signat.
10 selected opevamnahzat\ons

V- expresses explicitly the choices taken

No need to take all decisions now, so nothing said about Use PIN

Impact of the choices

* Operationalizations are chosen;

* The objective is to satisfy the main (top) softgoals;

* The consequences of the chosen operationalizations are
propagated to the parent softgoals;

* The evaluation of the decisions takes into consideration
the contributions of the children softgoals into a parent
softgoal;

* Positive and negative contributions are articulated with
the choices (accept/reject) to define the path in the tree
that better satisfies the stakeholder expectations.

32

16



Impact: example

Performance

N\
Response V
time
N
<
N Completeness,
N
.
N
N
N
N
N

Availability

¢
Confidentiality V
.-

m‘ LmeTYTYTN
\

A

L

N

‘}Incompr
essed

ST AN

P T R
. 4’ Optimised validation

“© \/ does not slow down 7
e the system ‘/\. -
RN A

N
N
N
N
N
N
N
N

Not enough to make a decision.

Performance: decide on the priority to Space (trade-off needed)
Security: needs to be detailed further; only Confidentiality and
Simple use have been satisfied

Impact of the choices: rules

% %
SERYER SRR

K
b DD o

L
EFEEEEELL
SN SR SR SRS SRS

) €2

| “W” = weak; “U” = Undefined |

17



Extracting concrete FRs from NFRs

Performance

Availability

+/ User friendly
ccess

N
N
N Completeness -
PV VPR o,

N &
N
N
N
[ D
N

‘/ Authorize
Access
In accounts:
- use indexing + uncompressed format
''''''''''''''' Signat.

- Identify users and validate them with rules and authenticate
access, comparing them with signatures 35

Availability

Effcloncy

lntérép ;at‘;il:ity f g o+

Maintainability | 4 | — | + + +
Portability : - 4 == + +
Reliability |+ | — | + + B
Reusabili |+ =|+|+]|+]|= +

Usabilty

: = + | = L
[Wiegers, K. E. (2003); Software Requirérﬁents. 2nd edition. Microsoft Press. ]

36

18



Conclusion

Systematic treatment of NFRS during requirements:

— ldentifies subjective needs of the project, transforming
them into functional requirements

— Highlights hidding shortcommings in a project
— Reuses valuable know-how

— Decreases the need of reengineering a project too early
(due to unsatisficed client)

— ... and,very importantly, helps identifying early trade-
offs

37

Bibliografia

 L.Chung, B.Nixon, E.Yu and J. Mylopoulos “Non-
Functional Requirements in Software Engineering”,
Kluwer Academic Publishers. ISBN 0-7923-8666-3.
(2000)

* Boehm, Barry e In, Hoh. Identifying Quality-
Requirement Conflicts. IEEE Software, March 1996,
pp. 25-35

* Chung L., “Representing and Using Non-Functional
Requirements: A Process Oriented Approach” Ph.D.

Thesis, Dept. of Comp.Sci. University of Toronto,
June 1993. Also tech. Rep. DKBS-TR-91-1.

38

19



